
Solving 2-List Coloring (by Reducing to
2-SAT)

Santiago Gil

March 2016

1 Introduction

The 2-List Coloring problem consists in finding a coloring of a graph G =
(V,E) where each node v ∈ V (G) has a set C(v) of possible colors assigned
to it such that |C(v)| = 2. That is, each node has a list of two colors that we
can use in a coloring.
In order to solve this problem, we will introduce the 2-SAT problem, to which
we can reduce 2-List Coloring. We can then solve an instance of 2-SAT in
polynomial time and obtain an answer that is equivalent to the answer of
our original problem.
As we know, the Coloring problem is NP-Complete. However, when we
restrict the possible colors that we can use to a list of two colors per node,
there is a polynomial time solution.

2 2-SAT Problem

The general SAT problem consists in determining if a Boolean formula with
restrictions on its variables can be assigned some set of values such that it
evaluates to true. Equivalently, it is finding out whether the formula isn’t a
contingency—a formula that always evaluates to false. (In that case, it could
make sense to replace the whole formula with a constant.)
The 2-SAT problem is a special case of SAT where each clause contains only
two terms. For example, an instance of 2-SAT could be: (a∨b)∧(c∨d)∧(e∨f);
or (a⇒ b) ∧ (c⇒ d).

2.1 Complexity

While the SAT problem is NP-Complete, there are several algorithms that
solve 2-SAT in polynomial time. One of those algorithms is Aspvall, Plass
and Tarjan’s algorithm.

1

2.2 Aspvall, Plass and Tarjan’s Algorithm

This algorithm [1] works by finding the strongly connected components
of a digraph that is constructed from the input formula. Strongly connected
components are digraphs’ counterpart of connected components, with the
added requirement that nodes be reachable in both directions. That means
that for any pair of nodes u and v in a strongly connected component there is
a path u→ v and another path v → u.
The digraph that we construct from the input formula is called an impli-
cation graph and it consists of one node for each term (a variable and its
negation are different nodes), and one edge for each implication (pointing
in that same direction). So, for example, if the formula includes the clause
(a⇒ ¬b), the digraph G has {a,¬b} ∈ V (G) and (a,¬b) ∈ E(G).
If a variable and its negation are in the same connected component there is
a cycle of implications that includes them. That would imply that x ⇒ ¬x
and ¬x ⇒ x. In that case there is no possible assigment that satisfies the
formula, because we cannot assign x and ¬x the same value.
In order to find those strongly connected components, APT’s algorithm uses
another algorithm: Kosaraju’s algorithm.

2.2.1 Kosaraju’s Algorithm

This algorithm has two stages. It starts by marking all nodes as unvisited
and creates an empty stack. Then it starts exploring the digraph using DFS
(Depth-First Search) from unvisited nodes, adding the new-found nodes to
the stack. It starts searches until all nodes in the graph are in the stack.
For the second stage, it inverts all the arcs in the digraph and marks all
nodes as unvisited. Then, while the stack is not empty, it takes the first
unvisited node from it and starts a DF search from that node (marking all
reachable nodes as visited). The set of nodes obtained by each DF search is
a strongly connected component of the digraph.

2.2.1.1 Complexity
Kosaraju’s algorithm runs in O(n +m) time if the digraph is represented
using an adjacency list.

3 Reducing 2-List Coloring to 2-SAT

3.1 Constructing a Boolean Formula

Given a node v ∈ V (G), let c(v) = {c0, c1}. For simplicity, we will assume,
without loss of generality, that colors are ordered increasingly in each list.
We will now study what could happen with any neighbour w of v and its
colors.

2

i. c(v) ∩ c(w) = ∅
In this case there are no clashes between the colors that we can choose
for v and w. Any combination we select is valid.

ii. c(v) ∩ c(w) = {c0}
If we color v with c0, we cannot do the same with w. In all other cases
there are no clashes.

iii. c(v) ∩ c(w) = {c1}
Similarly to the previous item, if we assign c1 to v then w needs a
different color.

iv. c(v) ∩ c(w) = {c0, c1}
This is the most restrictive case. It forces us to assign alternating colors
to v and w.

We can then state this terms in Boolean clauses.
LetXi be the variable that represents node vi ofG and its coloring. We define
the value of Xi to represent the way vi is colored: If Xi = false, vi is colored
with the first color in its list; otherwise, if Xi = true, vi is assigned its second
color.
Taking those variables we construct the following terms for each case:

i. true

ii. (¬Xv ⇒ Xw)

iii. (Xv ⇒ ¬Xw)

iv. (¬Xv ⇒ Xw) ∧ (Xv ⇒ ¬Xw)

3.2 Associated Digraph

From this formula, we construct a digraph H where each term is a node and
each arc follows the implications between them. Then we find its strongly
connected components using APT’s algorithm. As we stated before, if a
variable and its negation are in the same strongly connected component, the
formula is not satisfiable—and that means there isn’t a possible coloring of
the original graph G.
However, what if we determine that the formula is satisfiable? That would
guarantee that there is some 2 list-coloring of G. But we are looking for an
actual 2-list coloring, so we need to determine how to assign colors to nodes
in V (G) from the variables in this formula.

3

3.3 Constructing the Coloring

In order to do that, we take advantage of a property of Kosaraju’s algorithm:
the strongly connected components are returned in topological order. That
is, if a node u is in the i-th strongly connected component, v is in the j-th
one, with i < j, and we explore the digraph in topological order, u appears
before v.
That tells us that, if we take those u and v, the original formula can have
the implication u⇒ v, but not in the other direction—if not they wouldn’t be
in separate components.
Following the truth table for the implication operation, we want to avoid the
case where true ⇒ false; the only case where the implication evaluates to
false.
Therefore, if we explore strongly connected components in order, and we
assign each source-node’s term a value such that it evaluates to false, we
avoid implications of the form true⇒ false, and always obtain clauses that
evaluate to true in the formula.
Translating back from Xi values to the actual coloring, we select v’s color as
follows:

• If the strongly connected component that contains the node representing
variable Xi is returned before ¬Xi, then Xi := false, and v is colored
with its first color c0.

• Otherwise, if the variable Xi comes after ¬Xi, v is colored with its
second choice of color c1.

In both cases, assuming that the arcs between terms exist in H, we obtain
the implication (false⇒ true) ≡ true.

4 Complexity

Kosaraju’s algorithm, used in the second part of the process, runs inO(n+m).
Since the rest of the operations we do to construct the digraph are linear in
the number of nodes and edges in the original graph, the total complexity is
the same.

5 Recap

So, in order to solve 2-List Coloring by reducing it to 2-SAT we do the
following:

1. Translate the relationship between pairs of connected nodes in G and
their colors into implications of two terms.

4

2. Take all those terms and combine them into a formula F .

3. From F construct a digraph H where each node represents a term and
each edge is an implication (pointing in the same direction).

4. Use APT’s algorithm to find the strongly connected components of H.

5. Looking at each node v of H and its neighbors w, if SCC(v) = SCC(w),
then stop: there is no possible coloring. If SCC(v) < SCC(w), color v
with c0 and w with c1. If not, color v with c1 and w with c0.

References

[1] Bengt Aspvall, Michael F. Plass and Robert Endre Tarjan, A linear-time
algorithm for testing the truth of certain quantified boolean formulas,
1979.

5

	Introduction
	2-SAT Problem
	Complexity
	Aspvall, Plass and Tarjan's Algorithm
	Kosaraju's Algorithm

	Reducing 2-List Coloring to 2-SAT
	Constructing a Boolean Formula
	Associated Digraph
	Constructing the Coloring

	Complexity
	Recap

